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Introduction
● A reward function is important in RL task
● Hard to design reward function in some scenario (e.g. autonomous driving)
● Imitation learning allows agents to learn how to perform task like an expert 

○ Generative Adversarial Imitation Learning (GAIL, [12])
○ Generative adversarial nets (GANs, [13])

● Expert demonstrations varies significantly
○ Multiple experts might have multiple policies
○ Need external latent factors to better represent the observed behavior

● Goal: To develop an imitation learning framework that is able to automatically 
discover and disentangle the latent factors of variation underlying 
expert demonstrations
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GAN for imitation learning (GAIL)

https://www.youtube.com/watch?v=rOho-2oJFeA 4
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GAN for imitation learning (GAIL)
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● Introduce a latent factor c to represent the variation under expert 
demonstrations

● In GAIL, action is chosen as           
● Proposed method chooses action as 
● Maximize the mutual information     between latent code c and {state, action}. 
●     is a function of 

Proposed method

GAIL

InfoGAIL
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Proposed method
● Discriminator       maximizes
● Mutual information       minimizes
● Policy       updates with TRPO[2]     
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Proposed method
● Reward augmentation

○ Helps when expert perform sub-optimally
○ Hybrid between RL and imitation learning

● Replace vanilla GAN with WGAN[26]
○ More stable and easier to train
○
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Experiment Result - Learning to Distinguish Trajectories

● The driving experiment are conducted on Open Source Race Car Simulator
● Each color denotes one specific latent code

○ Different experts have different trajectories
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Experiment Result - Interpretable Imitation Learning

● Blue and red indicate policies under different latent codes
● They correspond to “turning from inner lane” and “turning from outer lane” 

respectively

10



Experiment Result - Interpretable Imitation Learning

● Different latent codes correspond to passing from right or left
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Experiment
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Conclusion
● Automatically distinguish certain driving behaviors by introducing the latent 

factors
● Discovering the latent factors without direct supervision
● Perform imitation learning by using only visual inputs
● Learning a policy that can imitate and even outperform the human experts
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Demo Video
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http://www.youtube.com/watch?v=YtNPBAW6h5k

