InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations Chih-Hui Ho, Chun Hu, Po-Jung Lai

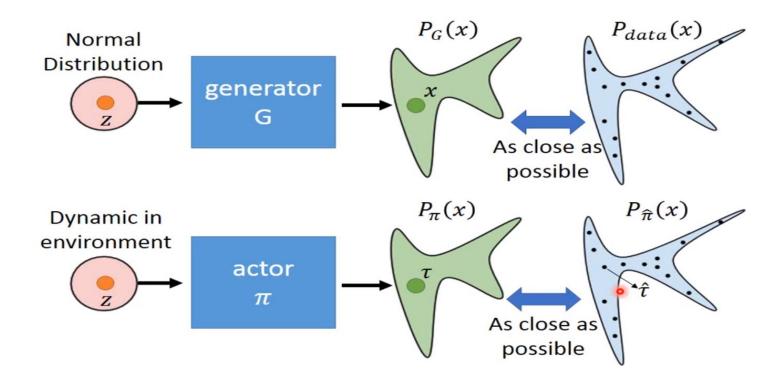
Outline

- 1. Introduction
- 2. Related work
 - Generative adversarial imitation learning (GAIL)
- 3. Proposed method
- 4. Experiment results
- 5. Conclusion

Introduction

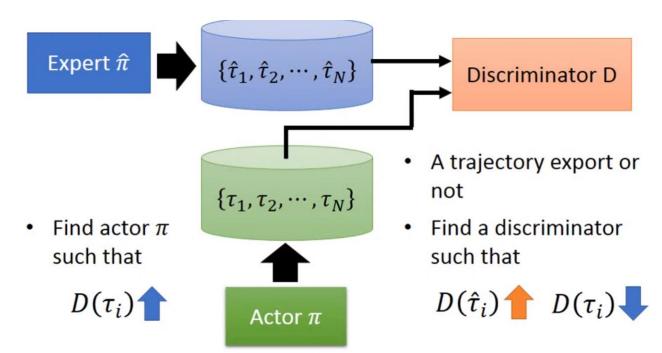
- A reward function is important in RL task
- Hard to design reward function in some scenario (e.g. autonomous driving)
- Imitation learning allows agents to learn how to perform task like an expert
 - Generative Adversarial Imitation Learning (GAIL, [12])
 - Generative adversarial nets (GANs, [13])
- Expert demonstrations varies significantly
 - Multiple experts might have multiple policies
 - Need external latent factors to better represent the observed behavior
- Goal: To develop an imitation learning framework that is able to automatically discover and disentangle the latent factors of variation underlying expert demonstrations

GAN for imitation learning (GAIL)



GAN for imitation learning (GAIL)

 $\min_{\pi} \max_{D \in (0,1)^{S \times A}} \mathbb{E}_{\pi}[\log D(s,a)] + \mathbb{E}_{\pi_E}[\log(1 - D(s,a))] - \lambda H(\pi)$



Proposed method

- Introduce a latent factor c to represent the variation under expert demonstrations
- In GAIL, action is chosen as $\pi(a|s)$
- Proposed method chooses action as $\pi(a|s,c)$
- Maximize the mutual information L_I between latent code c and {state, action}.
- L_I is a function of Q(c|s, a)

GAIL
$$\min_{\pi} \max_{D \in (0,1)^{S \times A}} \mathbb{E}_{\pi}[\log D(s,a)] + \mathbb{E}_{\pi_{E}}[\log(1 - D(s,a))] - \lambda H(\pi)$$
$$\lim_{\pi,Q} \max_{D} \mathbb{E}_{\pi}[\log D(s,a)] + \mathbb{E}_{\pi_{E}}[\log(1 - D(s,a))] - \lambda_{1}L_{I}(\pi,Q) - \lambda_{2}H(\pi)$$

Proposed method

- Discriminator D_{ω_i} maximizes
- Mutual information Q_{ψ_i} minimizes
- Policy π_{θ} updates with TRPO[2]

Algorithm 1 InfoGAIL

Input: Initial parameters of policy, discriminator and posterior approximation $\theta_0, \omega_0, \psi_0$; expert trajectories $\tau_E \sim \pi_E$ containing state-action pairs. **Output:** Learned policy π_{θ}

for
$$i = 0, 1, 2, ...$$
 do

Sample a batch of latent codes: $c_i \sim p(c)$

Sample trajectories: $\tau_i \sim \pi_{\theta_i}(c_i)$, with the latent code fixed during each rollout.

Sample state-action pairs $\chi_i \sim \tau_i$ and $\chi_E \sim \tau_E$ with same batch size.

Update ω_i to ω_{i+1} by ascending with gradients

$$\Delta_{\omega_i} = \hat{\mathbb{E}}_{\chi_i} [\nabla_{\omega_i} \log D_{\omega_i}(s, a)] + \hat{\mathbb{E}}_{\chi_E} [\nabla_{\omega_i} \log(1 - D_{\omega_i}(s, a))]$$

Update ψ_i to ψ_{i+1} by descending with gradients

$$\Delta_{\psi_i} = -\lambda_1 \hat{\mathbb{E}}_{\chi_i} [\nabla_{\psi_i} \log Q_{\psi_i}(c|s, a)]$$

Take a policy step from θ_i to θ_{i+1} , using the TRPO update rule with the following objective:

$$\hat{\mathbb{E}}_{\chi_i}[\log D_{\omega_{i+1}}(s,a)] - \lambda_1 L_I(\pi_{\theta_i}, Q_{\psi_{i+1}}) - \lambda_2 H(\pi_{\theta_i})$$

end for

 $\min_{\pi,Q} \max_{D} \mathbb{E}_{\pi}[\log D(s,a)] + \mathbb{E}_{\pi_E}[\log(1 - D(s,a))] - \lambda_1 L_I(\pi,Q) - \lambda_2 H(\pi)$

7

Proposed method

- Reward augmentation
 - Helps when expert perform sub-optimally
 - Hybrid between RL and imitation learning

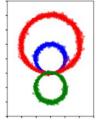
 $\min_{\theta,\psi} \max_{\omega} \mathbb{E}_{\pi_{\theta}} [\log D_{\omega}(s,a)] + \mathbb{E}_{\pi_{E}} [\log(1 - D_{\omega}(s,a))] - \lambda_{0}\eta(\pi_{\theta}) - \lambda_{1}L_{I}(\pi_{\theta}, Q_{\psi}) - \lambda_{2}H(\pi_{\theta})$

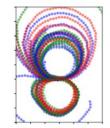
- Replace vanilla GAN with WGAN[26]
 - More stable and easier to train
 - 0

$$\min_{\theta,\psi} \max_{\omega} \mathbb{E}_{\pi_{\theta}} D_{\omega}(s,a)] - \mathbb{E}_{\pi_{E}} [D_{\omega}(s,a)] - \lambda_{0} \eta(\pi_{\theta}) - \lambda_{1} L_{I}(\pi_{\theta}, Q_{\psi}) - \lambda_{2} H(\pi_{\theta})$$

Experiment Result - Learning to Distinguish Trajectories

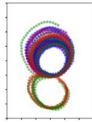
- The driving experiment are conducted on Open Source Race Car Simulator
- Each color denotes one specific latent code
 - Different experts have different trajectories

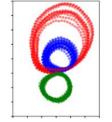




(a) Expert

(b) Behavior clon



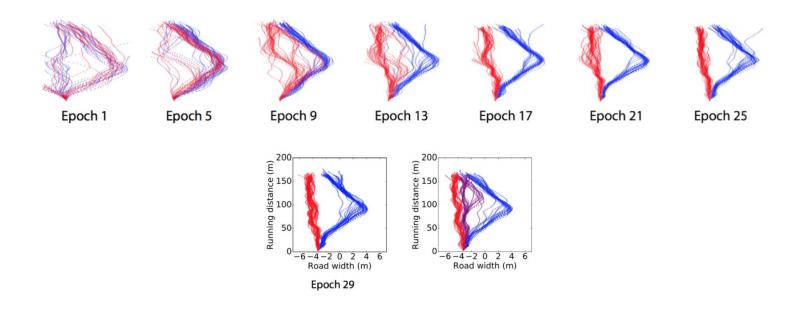


(d) Ours

(c) GAIL

Experiment Result - Interpretable Imitation Learning

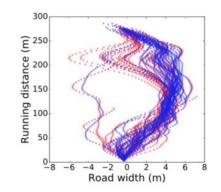
- Blue and red indicate policies under different latent codes
- They correspond to "turning from inner lane" and "turning from outer lane" respectively



Experiment Result - Interpretable Imitation Learning

• Different latent codes correspond to passing from right or left





InfoGAIL

GAIL

Experiment

Method	Avg. rollout distance
Behavior Cloning	701.83
GAIL	914.45
InfoGAIL \setminus RB	1031.13
InfoGAIL \ RA	1123.89
InfoGAIL \ WGAN	1177.72
InfoGAIL (Ours)	1226.68
Human	1203.51

Conclusion

- Automatically distinguish certain driving behaviors by introducing the latent factors
- Discovering the latent factors without direct supervision
- Perform imitation learning by using only visual inputs
- Learning a policy that can imitate and even outperform the human experts

Demo Video

